
THE BOLTZMANN EQUATION AND NEWTON'S METHOD 

A. N. Temchin UDC 533.70 

A method much used in functional ana lys i s  for  solving nonlinear  equations is applied to the 
Bol tzmann equation. 

We inves t iga te  a poss ib le  ma thema t i ca l  descr ip ton  of a gas  consis t ing of N >> 1 identical  c l a s s i ca l  
pa r t i c l e s  of m a s s  m located in a m a c r o s c o p i c  volume V with the s y s t e m  being cons idered  asympto t ica l ly  
la rge ,  i .e . ,  N - -  ~, V ~ ~,  and N / V -  n = const .  

We use the following notation: v, v. a r e  par t ic le  veloci t ies  before  a col l i s ion leading to the appearance  

of the ve loc i t ies  v ' ,  v ' ;  f - f(t, r ,  v), f - f ( t ,  r ,  v), f '  ~ f(t, r ,  v ' ) ,  f.' ~ f(t, r ,  v ') ;  K -= K( ]v -v ] ,  ~, go) is the 

kerne l  of the col l i s ion in tegra l  containing the di f ferent ia l  c r o s s  sect ion (r(lv-v.t, ~, 9) fo r  par t ic le  sca t t e r ing  

by the angles ~ and (pin the cen te r  of m a s s  sys tem;  U(r) is  the potential  of the ex te rna l  field; do)~- ddd go; 
d~ - dvtdv2dv 3. 

* * * 

The equation for  the function f can be wri t ten  

(0 0 S + v  Or m Or Ov f - -  K ( f ' [ ' - - [ f )  dtodv, (1) 

f(O, r, v ) =  fo (r, v ) - =  :o. 

We make  ce r t a in  assumpt ions  with r e s pec t  to the quanti t ies  appear ing  in i t .  

1. The par t i c les  in te rac t  through a field having a potential  go (rij) (rij is the dis tance between the i - th  
and j - th  molecuIes)  which is spher ica l ly  s y m m e t r i c a l  and which has a finite radius  of act ion r 0, for  example,  
fo r  

-(~-t) r ~ < r  o 
%rq , v > 3 ,  ~o = cons t>  0, (2) 

(riJ) = O, Q1 > r e  

we obtain the kernel  K in the f o r m  (see [1-3]) 

K - t v -  v Iv k @ > o, ~ = - -  
v - - 1  

(3) 

with 

k (~) d~ ~ ~ < oo. (3 a) 

Consequently,  the total  par t ic le  in te rac t ion  c r o s s  sec t ion  S is  f ini te.  T h e r e  a r e  o ther  well-known methods 
for  introducing a finite S; apparent ly  the se lec t ion  of any pa r t i cu l a r  one is of no grea t  s ignif icance [4]. 

2. All functions appear ing  in Eq. (1) a re  continuous.  

3. U(r) -> O. 

4.  The re  is  a constant  b > 0 such that  
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m [vi~+ U(r). Ifo (r, v) exp {bE (r, v)}t < c~, E (r, v) ~ ~ 

5.  AII co l l i s ions  b e t w e e n  p a r t i c l e s  a r e  e l a s t i c ;  t h e r e f o r e :  

i v l ~ + l y l ~ = l v ' ! ~ +  Iv ' i  ~, 

v' = v + n (n, v - v),  

v' ( v) ~ - - - - V - - r l  r l ,  V - -  , 

n ~ {cos ~, sin ~ cos % sin ~ sin q~}, 

w h e r e  the angle  q) is  a r b i t r a r y  and ~ is  e a s i l y  d e t e r m i n e d  ([1, 3]) fo r  a g iven  po ten t ia l  ~( r i j  ). 

The  me thods  deve loped  fo r  the so lu t ion  of Eq.  (1), which a r e  now r a t h e r  n u m e r o u s  (see [1-3],  f o r  e x -  
ample ) ,  do not, as  a ru le ,  a l low one to e s t a b l i s h  in what s e n s e  the a p p r o x i m a t e  soIu t ton  a p p r o a c h e s  the t r u e  
so lu t ion  (the ac tua l  e x i s t e n c e  of which i s  only a s s u m e d ) .  The  me thod  deve loped  be low is  f r e e  of such  a d e -  
f i c i ency .  

Newton ' s  Method.  In func t iona l  a n a l y s i s ,  the fo l lowing is  wel l  known (see [5, 61). Let  X and Y be 
B a n a c h  s p a c e  and B an o p e r a t o r  m a p p i n g  f r o m  X into Y. We a s s u m e  tha t  in  the  s p h e r e  S (x 0, r )  c X, the 
o p e r a t o r  B has  a F r e c h e t  d e r i v a t i v e  B~ which s a t i s f i e s  the  L i p s c h i t z  condi t ion  

,=l[ 42 l[Jx~ -- x 2[Jx, l const, 

and the o p e r a t o r  (Bk0)-* e x i s t s .  T h e n  with r e s p e c t  to the equa t ion  

Bx = 0 (7) 

one can  show the fo l Io~[ng .  

THEOREM. If II(B~)-ll t  
u 

fo r  

Eq. (7) has in the sphere 
eurrenee relation 

c o n v e r g e s  to it. 

!t(B~0)-lBx01lx ~ ~,  and 1 is  the cons tan t  a p p e a r i n g  in inequal i ty  (6), then  

1 ~• < -g- (8) 

l[ x -  x011 x -< ( 1 -  ~/~L-~p-~)/2#1 a unique s o l u t i o n x  and the s equence  def ined by the r e -  

x,~+~ = x~ - -  (B'~o) "~ Sx,~, (9) 

The  modi f ied  Newton ' s  me thod  fo r  the  so lu t ion  of Eq.  (7) c o n s i s t s  of i ts  r e p l a c e m e n t  by the so lu t ion  
fo r  the s e r i e s  B~0xn+ 1 = B ~ 0 x n - B x n -  

Equa t ion .  We in t roduce  a new unknown funct ion h(t, r ,  v) by m e a n s  of the iden t i ty  

[ (t, r, v) -~ h (t, r, v) exp {--  BE (r, v) (2tl - -  t)}, (10) 

w h e r e  t E (0, t~), and fl is a s c a l a r  p a r a m e t e r  of d i m e n s i o n a l i t y  it] -1 [E] -1 r e l a t e d  to t 1 b y  the equa l i ty  2/? t 
= b .  

The  func t ion  h - h(t, r ,  v) s a t i s f i e s  the equa t ion  

O + v Or m Or 0v ~- RE (r, v) h = Ke (h'h.' - -  hh). dodv,. (11) 

h(0, r, v ) = h o ~ f o e x p { b E ( r ,  v)}, 

K~ ~ Kexp {-- ,6E (r, v) (2tl 2- 0}. ( l l a )  

F o r  the fol lowing,  it is  n e c e s s a r y  to know s o m e  p r o p e r t i e s  of the o p e r a t o r  [ Is ,  a b a c k w a r d  d i s p l a c e -  
m e n t  by a t i m e  s in a c c o r d a n c e  with the c h a r a c t e r i s t i c s  of  the equa t ion  

o 1 + v - -  u = 0  
Or m Or Ov 

(see  [7]). I t s  e f fec t  on any func t ion  g(t, r ,  v) i s  tha t  the f i r s t  a r g u m e n t  t a k e s  on the va lue  t - s,  and r and 
v t ake  on those  va lues  f o r  pos i t ion  and ve loc i t y  which a p a r t i c l e  of  the gas  under  c o n s i d e r a t i o n ,  m o v i n g  in 
the  f ie ld  U(r) without co l l i s ion ,  m u s t  have  at the t i m e  t - s in o r d e r  tha t  they r e s p e c t i v e l y  equal  r and v at  
the t i m e  t .  F r o m  this  def ini t ion,  we i m m e d i a t e l y  conclude:  
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a) [ylx(t ,  r ,  v) + y2y(t, r ,  v)] s = 71[x(t, r ,  v)] s + y2[y(t, r ,  v)] s, 71, I/2 = const;  

b) I[x(t, r, V)ls] = [Ix(t, r, v)l]s; 
o), if the funct ion x(t,  r ,  v) is  cont inuous ,  then  the func t ion  ix(t, r ,  v)] s i s  a l s o  cont inuous .  

In  addit ion,  s ince  E (r, v) i s  the to ta l  e n e r g y  of a p a r t i c l e  in the f ie ld  U(r), it i s  obvious  that  

[E (r, v)] s = E (r, v). (12) 

To  the p r o b l e m  (11), (11a), t h e r e  c o r r e s p o n d s  an i n t e g r a l  equa t ion  which can  be wr i t ten ,  keep ing  
Eq.  (12) in mind ,  

t 

h = .[ exp {--  i ~ E ( r , ,  v) ( t - -  ~)) [~Ke(h'h'. - -hh)&odv],  �9 J,-~ dr 3- [ho]texp {-- [}E (r, v)t}, (13) 
o 

or ,  in o p e r a t o r  f o r m ,  

Bh = O, (14) 

if  by def in i t ion  

B ~ E 3 - {  I }3-I, 
t 

0 

] -- - -  [hob exp {-- 13E (r, v) t}; 

E is  the  unit  o p e r a t o r .  

We apply Newton ' s  me thod  to Eq.  (14). 

Solution.  We des igna te  by C the Banach  s p a c e  of bounded cont inuous funct ions  dependent  on t, r ,  
and v ( t E ( 0 ,  tl),  tr[ ~ o ,  Ivl <oo) w i t h t h e  n o r m  

]I X [Ic = max [ x I. 
t, r , v  

The  o p e r a t o r  B m a p s  C into C. Indeed,  f o r  a r b i t r a r y  x E C we have  

I{xlx}l~211xtl~l(t, r, v), 
t 

0 

But it i s  e a s y  to show that  

l(t r, v)~<~ 
0 

t 

(15) 

(15a) 

(15b) 

(16) 

t 

0 

\ m b  ] S exp{-[3E(r '  v)(t--~)} I v l ' +  r (v 3-3) D-(~+3~ (~ 
0 

(see [8]); h e r e ,  D_(T + 3) is  a p a r a b o l i c  cy l i nde r  funct ion.  Since U(r) -> 0, we have  the r e l a t i o n  

T h e r e f o r e  

v') 

\ 

7 
F (y 3- 3) D_(v+a ) (0) ~. 

(r, V) + ) 

dr 

(17) 

(18) 

It  then  fo l lows tha t  /(t, r ,  v) < % and f u r t h e r  
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I(t, r, v) ~ O, (19) 
tl-+O 

since the quantity fi increases without limit when t I ~ 0. Therefore, since j E C, the operator B acts in C. 

We shall show that it is Frechet differentiable, for which we consider the difference 

B (Xo ~ z) - Bxo = {Xo I z} + {z[ xo} + z ~ {z[ z}. 

It is easy to show that 

iI (~ [z} lie -~- o. 

The operator 

B'~o = {Xo i } - {  I~o} + E (20) 

is linear, operates in the space C and is bounded; it is therefore a strong derivative of the operator B at 
an (arbitrary) point x 0 E C. 

We verify that the operator B~0 always has an inverse, or, in other words, the following is valid. 

THEOREM i. The equation 

B'~oz=s, sCC 

has a unique solut ion :for any x 0 EC. 

Indeed, if we look for  the l a t t e r  in the f o r m  

z(t, r, v) ------ z (t, r, v) exp{at}, a = c o n s t > 0 ,  

then we obtain for  the function ~ ' -  ~'(t, r ,  v) the equation 

t 

z =  f exp{--(~E(r, v)@a)(t--T)}[j'K~(xS @ x'oz'--xo?--x~z)do)dv],_ dT-c sexp{--at}=---LC~z. 

The Lipsehi tz  constant  for  the ope ra to r  L a is  
t 

z= =- 4ilx011~ ii y exp{--(~E (r, v)-}- a)(t--~)} [~ KedoJdv ]t_d~l! c 

< 4][xoi]ck!~m-~} 

0 

K~(rnb) ~/2 r , 2 ,  / I [c  

and consequent ly  has the p rope r ty  

(21) 

(22) 

(23) 

(24) 

I~ -+ 0. (25) 
(z~r 

For sufficiently large ~, L G is therefore a contraction operator. It transforms the sphere S(0, rc~ ), with 

a radius r G satisfying the condition llsIIc -< (I-/c~)rc~, into itself. But then in accordance with the principle 
of contraction reflections (see [5]), Eq. (23) has a unique solution in the sphere S(0, r~) to which the se- 

quence {Zn+i = LC~zn}, z0E S(0, r G) converges uniformly. Thereby, not only is Theorem 1 proved, but a meth- 
od for solving equations like Eq. (23) is obtained. 

It is now easy to show the following. 

THEOREM 2. For any choice of the element x 0 and sufficiently small it, Eq. (14) has a solutionwhich 
is unique in some sphere with center x 0. 

In fact, in accordance with the properties of the norm of a linear operator 

IBm,' -- Bx. II sup [I( ~, -- B~) silc = sup I B'x,s -- B~s,rc ~< 4 Ill (t, r, v)IIc II xl -- x~ !ic = Ill xl -- x2 I!~, 
ilsll c ...<~ lisll c <i (26) 

l~411tr r, v)Ilc. 

Using property (19) and the boundedness of the operator (B~0)-i (which follows from the boundedness of B~0, 
see [9]), the quantity ff'~l for arbitrary x 0 E C can be made so small that condition (8) is satisfied. Indeed, 
since the minimum radius of the sphere in which a solution of Eq. (21) exists is easily estimated, we obtain 

T -i 
for II(B~0)-II] and [[(Bx0) Bx0I[ C the following inequalities: 
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i{ (Bxo) "~ {i ~ exp {at~} , (27) 

]l (B'xJ "1 Bxollc ~ ~ llBx01Ic- (28) 

The value of t~ for  which condition (8) is sa t is f ied is de te rmined  f r o m  the knowledge of the upper  bound (18) 
of the function l(t, r ,  v).  

Thus fo r  a sufficiently sma l l  in te rva l  (0, t 0,  the solut ion of Eq. (14) is the l imit  of the sequence of 
solut ions for  the a r r a y  

Bx.xn+ t ---- B'xoX~ - -  Bxn ,  (29) 

the equations of which a r e  ve ry  much like Eq. (21) with T h e o r e m  1 being valid for  them also.  The ra te  of 
convergence  of this sequence is  de te rmined  by means  of the inequality (see [5]) 

tlx- x~ {Ic ~< q"~ 
1 - - q  ' (30) 

q ~  2 ( 1  ' - -V 1 - -  4~• 

Defining the function h(t, r ,  v) in an in te rva l  (0, t l) we ass ign  f(tl, r ,  v) as the initial  condition for  Eq. (1) 
in some  t ime in te rva l  (it, t2), e tc .  Obviously,  the function f can be calculated in any t ime  in terva l  by this 
method under the r e s t r i c t i o n s  introduced.  

In o r d e r  that the sequence (9) converge  as rapidly  as poss ible ,  the se lec t ion  of the zeroth  a p p r o x i m a -  
tion x 0 should be made  by using some  phys ica l  concept o r  o ther  or  by taking the solution of a model  equation 

as X 0 . 

The structure of Eq. (29) is similar to, and for Maxwellian particles with U(r) - 0 (where the function 
h is introduced by means of the identity f = h exp{-xIv{2}, • = const > 0) agrees with the integral form of the 
linearized kinetic equation. It is obvious that the solution of the latter is close to the solution of Eq. (I) 
when h(0, r, v) is so small that the sequence (9) converges in the interval (0, tl), t i ~ ~'~ (T~ is the mean 
free time of the particles) with all x n starting with x 2 being neglected in comparison with x i. 

From the practical aspect, the Newton method (see [5]) is perhaps more useful where the role of se- 

quence (9) is played by the following: 

x,~+l == x n - -  (Bx~) ' lBx~.  (31) 

I t  is  c h a r a c t e r i z e d  by m o r e  rapid  convergence  

1 (32) !l x - -  x,~ {it ~ ~ (2~• en-t :4. 

It iS probable  that fo r  some  spec ia l  choice of x 0 the sequence (9) converges  in the L 2 space  of quad-  
ra t i ca l ly  in tegrable  functions.  Indeed, at leas t  fo r  some x 0 ~ L 2 the o p e r a t o r  B~0 acts  in L 2 (s imples t  ex-  
ample,  if x 0 ~: 0, then B'. = E and B ~ L  2 ~ L2).  This  makes  it poss ible  to a t tempt  to solve Eq. (14) by New- 

" "~0 
ion ' s  method in L 2 space,  which would make  it possible  to e l iminate  the r equ i r emen t  fo r  continuity of the 
init ial  condition f0. 

The r e su l t s  p resen ted  pe rmi t  s imple  genera l iza t ion  to the s y s t e m  

0 O t OU~ (r) 
-O~- + v~ Or m,: Or (33) 

i ~ l  . . . . .  n 

and to m o r e  complex  s y s t e m s  which, in pa r t i cu la r ,  
The s y s t e m  (33) should obviously be cons idered  as a vec to r  equation with r e spec t  to the function 

, f V1 c ,  

desc r ibe  ine las t ic  p r o c e s s e s  (see, for  example ,  [10, 11]) ~. 
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where by [~ .C is understood the product of spaces .C of bounded continuous functions dependent on t, r, 
l l i= [ 

and v i. The corresponding theorems are  nearly the same as those proven above. 

V 
N 
N / V  
t 
r 
m 
v 

f, f, f', f' 

U(r) 
ff  

S 

K 

cP(rij) 

rP O, u 
r 0 

X, Y, C 
B 
Bk 
b, l, toz , c~, fl, ~(, Ti, 72, #, ~t 
h 

h0 
t(t, r, v) 
E (r, v) 

x, z, ~, Xn, z n 
Lo~ 

F 

D-(7 + 3) 
S(x0, r), S(0, roz) 

[ ]s 
ft IIc 

NOTATION 

ts the volume of system under study; 
ts the number of particles in it, 
Is the density of particles; 
ts the time; 
is the vec tor - rad ius ;  
ts the mass  of part icles;  
~s its velocity; 
are the distr ibution functions; 

is the external  field potential; 
ts the differential sect ion of part icle  sca t te r ing  by angles ~, ~; 
ts the total sca t te r ing  section; 
is the kernel of coll ision integral;  
ts the potential of molecular  field; 
Ls the distance between i - th  and j- th part icles;  
ts the function of distr ibution at t ime moment t = 0; 
are  the constants  in the law of potential variat ion cP(rij); 
is the radius of action (P(rij); 
is the angular  portion of kernel K; 
is the power exponent in relat ion K versus  Iv -v l ;  
are  the Banaoh spaces;  
is the operator ;  
is its derivative;  
are  the sca l a r  constants;  
is the new unknown function; 
is the value at t ime moment  t = 0; 
is the auxil iary function; 
is the total energy of particle;  
are  the elements  of space C; 
is the l inear  opera to r  in it; 
is the gamma-funct ion;  
is the function of parabolic cylinder; 
are the spheres  in space C; 
is the shear  operator;  
is the norm of element of space C. 

I, 

2. 

3, 

4. 
5. 

6. 

7. 

8. 
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