THE BOLTZMANN EQUATION AND NEWTON'S METHOD

"A., N. Temchin : UDC 533.70

A method much used in functional analysis for solving nonlinear equations is applied to the
Boltzmann equation.

We investigate a possible mathematical descripton of a gas consisting of N > 1 identical classical
particles of mass m located in a macroscopic volume V with the system being considered asymptotically
large, i.e.,, N —> %, V —, and N/V = n = const.

We use the following notation: v, y are particle velocities before a collision leading to the appearance

of the velocities v', Yk'; f=1f¢, ¢, v), £=1(¢t, r, ‘Q’ fr=1¢, r, v), £ =1{¢t, r, v); K= K(Iv-gl, #, ¢) is the
* *
kernel of the collision integral containing the differential cross section cr(fv—yk I, &, ¢) for particle scattering
by the angles ¢ and ¢in the center of mass system; U(r) is the potential of the external field; dw= ddd ¢;
dx = dvydvydvs.
L 3
The equation for the function f can be written

B U 4 Y IR W gy
(az+va, m r a‘,)f—fK(fg—fpdde,

FO, r, vi=fr, vy=F,.

We make certain assumptions with respect to the quantities appearing in it.

1

1. The particles interact through a field having a potential ¢ (rjj) (rij is the distance between the i-th
and j-th molecules) which is spherically symmetrical and which hag a finite radius of action ry, for example,
for

—~(v—1)
N @S Tu<To = const >0 2
(Y77 B s gm0 g
we obtain the kernel K in the form (see [1-3])
v—>5 (3)

K=|v—v]"k@® >0, Y= —
* v-—1

with
j‘k(ﬁ)dm = k<< . (32)

Consequently, the total particle interaction cross section Sis finite. There are other well-known methods
for introducing a finite S; apparently the selection of any particular one is of no great significance [4].

2. All functions appearing in Eq. (1) are continuous.
3. Uxy= 0.

4, There is a constant b > 0 such that
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o6 V) expE (T, W)l <oo, E(r, v) == |vE+U ).

5. All collisions between particles are elastic; therefore:
VEEIVE= YRV

Vv =v-nn, v—v),
*

V' o= v-—u{n, v—1v),

® B &

n = {cos ¥, sindcosy, sindsing},
where the angle ¢ is arbitrary and ¢ is easily determined ({1, 3]) for a given potential q}(r”).

The methods developed for the solution of Eq. (1), which are now rather numeroug (see {1-3], for ex-
ample), do not, as a rule, allow one to establish in what sense the approximate solution approaches the true
solution (the actual existence of which is only assumed). The method developed below is free of such a de~
ficiency.

Newton's Method. In functional analysis, the following is well known (see [5, 6]). Let X and Y be
Banach space and B an operator mapping from X into Y. We assume that in the sphere Sz, r) © X, the
operator B has a Frechet derivative B} which satisfies the Lipschitz condition

Bry— B | <1l% — 5l L= const, ©

and the operator (Bkg} -1 exists. Then with respect to the equation
Bx =10 {7

one can show the following.

THEOREM. I U(l%g;o)"1 = u, H(B;io)"inQHx =mw, and [ is the constant appearing in inequality (6), then
for

i < % ®)

Eq. (7) has in the sphere |[x— XoﬁX = (1—+vI—4unl) /2pl a unique solutionx and the sequence defined by the re-
currence relation

Xpay =Xy — {B;D}'IBX,“ ©)
converges to it,
The modified Newton's method for the solution of Eq. (7) consists of its replacement by the solution
for the series ByXn+ 1 = B%OXn"BXm

Equation. We introduce a new unknown funetion h(t, r, v) by means of the identity

@, v, vy=h(, r, Viexp{—BE(r, v) 2, — D}, {10}
where t € (0, ty), and 8is a scalar parameter of dimensionality 17 [E17Y related to ty by the equality 28,
= bo
The functionh = ht, r, v) satisfies the equation
@ ) 1 U@ 9 § iyt
L — 2 L BE Y, = { K, ('} — hh) dedv, {11}
(6t+v6r m  fr 6v+§ (rv}) 3 e(* ”’}m“‘
10, 7, v) = hy = fyexp {(BE(r, W)},
K, = Kexp{—BE(r, v) (2 —1}.

For the following, it is necessary to know some properties of the operator | lg, @& backward displace-
ment by a time s in accordance with the characteristics of the equation

(ing&miwi)uxg

{11a)

(see [7]). Its effect on any function g(t, r, v) is that the first argument takes on the value t — s, and r and
v take on those values for position and velocity which a particle of the gas under consideration, moving in
the field U(r) without collision, must have at the time t — s in order that they respectively equal r and v at
the time t. From this definition, we immediately conclude:
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a) [vix@t, r, v) +voy(t, r, V)lg = y4[x¢t, r, Vg + voly(t, T, Vg, vy, ¥y = const;
b) |[xt, r, gl =[xt r, Vg
c). if the function x(t, r, v) is continuous, then the function [x(t, r, v}lg is also continuous.
In addition, since E(r, v) is the total energy of a particle in the field U(z), it is obvious that
(E{r, V)l,=E(, v). (12)

To the problem (11), (11a), there corresponds an integral equation which can be written, keeping
Eq. (12) in mind,
t

h= (exp{—BE(r, v)(t—1} [ 5 K, (W'H —hh) dmdv]t dv + [hyl,exp{—BE (r, v)1}, (13)
6 * & = jI—T
or, in operator form,
Bh =0, (14)
if by definition
B=E+{|}+} (15)
¢
(o= S. exp{—BE(r, V) (t—7)} ” K. (*,2, — x;fz) dmd‘*/ ]t_-g dv, (15a)
i
j=— Ikl exp{—BE( V)t (15b)

E is the unit operator.

We apply Newton's method to Eq. (14).

Solution. We designate by C the Banach space of bounded continuous functions dependent ont, r,
and v ®€(0, ty), [r] =%, |v| =) with the norm

X|.= max | x|.
], ~ max x|

The operator B maps C into C. Indeed, for arbitrary x € C we have

<20x[g10 T, W),
f!{XIx}I< Ixlci@ r, v) 16)
1, 1, V)= [ exp{—PE(r, v) ( — 1)} | K.dady (2
0 AT
But it is easy to show that
I3

ie, r, v)<§exp{~—[5E(r, V) (i—v)}[fKexp{-——;—E(r, Z)}d“’dY] dx

§ i

m mb

b v
4 s

t
\<l€jexp{—ﬁ5(r, v)(t—r)}[lvl?jexp{— dv -’rSIglveXp{—~ |g|2}dy] v

T (v +3) D—y+3 (0) dt amn
= /2 3
]/ 2 (mb)v T ("2—) ot

_i ( fnf; .)3/2 f exp{—BE (r, v) (t— )}

Ivi?+

(see [8]); here, D_(.y +3) is a parabolic cylinder function. Since U(r)= 0, we have the relation

(Ve < [(% E, v))”” L — (—,fl— E@, v) )/

Therefore

mb

b
s )3/2 I —exp {_«?E(r, V)} 2 gy )y TOW+3) Dt O | (18)
¢, r, < k( ) BE(r, V) ( m ) /g(mb)vﬂr(i)

2

It then follows that it, r, v) <, and further
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It 1, v) > 0, (19)

t1—0
since the quantity g increases without limit when t; — 0. Therefore, since j € C, the operator B acts in C.
We shall show that it is Frechet differentiable, for which we consider the difference

B (xy+ 2) — Bxy = {x,| 2} + 2|} + 2+ {217
It is easy to show that
I{z12} e

l2]e

fel. ~0
The operator
B;oz{xoi }‘1‘{ kx0}+E (20)

is linear, operates in the space C and is bounded; it is therefore a strong derivative of the operator B at
an (arbitrary) point x; € C.

We verify that the operator Bko always has an inverse, or, in other words, the following ig valid.
THEOREM 1. The equation
Brz=s, scC 21)

has a unique solution for any x,€C.

Indeed, if we look for the latter in the form

2(t, T, v)=2z(, 1, V)exp{at}, o= const>0, 22)
then we obtain for the function Z =Z(t, r, v) the equation
t ~
Ezyexp{ ([SE(r V) + a)(t—ﬂr)}u xz kxz —xoz—xoz)dmdv} dv+ sexp {—at} = L%z {23)

it
The Lipschitz constant for the operator LY is

=45 fexp {(—(BE@ V) +a) — 0} | [ Kudody |,__dr],

2 2 T (3D s (O) )
(WE(r, v)>" + V’;(mb)w (v ;) )!JC (24)

Cy o [ A )32
<4”xoilcki~r;1;) BE (r, V) +
\ ? i

1 —exp{— (BE (r, v) + a){;} (

and consequently has the property

l,—0.
m(;:o (25)
For sufficiently large «, L% is therefore a contraction operator. It transforms the sphere S(0, Ty ), with
a radius r, satisfying the condition |[s]c = (1-g)ry, into itself. But then in accordance with the principle
of contraction reflections (see [5]), Eq. (23) has a unique solution in the sphere 8(0, r,,) to which the se-

guence {zn+1 =L Zn} z,€8(0, r o) converges uniformly. Thereby, not only is Theorem 1 proved, but a meth-
od for solving equations like Eq. (23) is obtained.

It is now easy to show the following.

THEOREM 2. For any choice of the element x, and sufficiently small t;, Eq. (14) has a solutionwhich
is unique in some sphere with center x;.

In fact, in accordance with the properties of the norm of a linear operator

il
2 fcv

| By, — B, | = sup [ (By, — Bi) sl = sup |Bis — Buslo < 4L 1, V)|, | — s = [, — x
fsl, <1 T8, <1 (26)
1=4]1(¢, 1, V)HC.
Using property (19) and the boundedness of the operator (B;{O)"1 (which follows from the boundedness of B! ,
see [9]), the quantity unrl for arbitrary x, € C can be made so small that condition (8) is satisfied. Indeed,
since the minimum radius of the sphere in which a solution of Eq. (21) exists is easily estimated, we obtain
for “(B' “1| and “(on) 1BX0“C the following inequalities:



I8 < SR @)
1813 Byl < S g (28)

The value of t; for which condition (8) is satisfied is determined from the knowledge of the upper bound (18)
of the function I{t, », v).

Thus for a sufficiently small interval (0, t;), the solution of Eq. (14) is the limit of the sequence of
solutions for the array

B;nxn+1 = B;oxn - an, (29)
the equations of which are very much like Eq. (21) with Theorem 1 being valid for them also. The rate of
convergence of this sequence is determined by means of the inequality (see [5}])

Hx-”xnﬁg\< Iqx 3

-4 (30)

| S —
QEE—E‘(1-}/ T —duxl).

Defining the function h(t, r, v) in an interval (0, t;) we assignf(t;, r, v) as the initial condition for Eq. (1)
in some time interval (t;, t,), ete. Obviously, the function f can be calculated in any time interval by this
method under the restrictions introduced.

In order that the sequence (9) converge as rapidly as possible, the selection of the zeroth approxima-
tion x; should be made by using some physical concept or other or by taking the solution of a model equation
as xg.

The structure of Eq. (29) is similar to, and for Maxwellian particles with U(r) = 0 (where the function
h is introduced by means of the identity f=h exp{-x|v|’}, X = const >0) agrees with the integral form of the
linearized kinetic equation, It is obvious that the solution of the latter is close to the solution of Eq. (1)
when h(0, r, v) is so small that the sequence (9) converges in the interval (0, t), t; ~ 7 (7, is the mean
free time of the particles) with all x, starting with x, being neglected in comparison with x,.

From the practical aspect, the Newton method {(see {5]) is perhaps more useful where the role of se~
quence (8) is played by the following:
Kpg1 = X — (Bx ) "Bt 31)

It is characterized by more rapid convergence
1 . y
35—l < g @und)” . (32)

It is probable that for some special choice of x; the sequence (9) converges in the L, space of quad-
ratically integrable functions. Indeed, at least for some x, €L, the operator By acts in L, (simplest ex-
ample: if x, =0, then B:'>€0 =E and B! L, = L,). This makes it possible to attempt to solve Eq. (14) by New-
ton's method in L, space, which would make it possible to eliminate the requirement for continuity of the
initial condition f;.

The results presented permit simple generalization to the system

x2 ﬁ_;wg) _2'”1§;<_ i) dady
R St ; o s fo — i .
i=1, ..., n

and to more complex systems which, in particular, describe inelastic processes (see, for example, [10, 11y,
The system (33) should obviously be considered as a vector equation with respect to the function

()
f; I P fc
fa E

s

C,

I

i
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n
where by [l ¢ is understood the product of spaces C of bounded continuous functions dependent on t, ¥,
1 1

=1

and v;. The corresponding theorems are nearly the same as those proven above.

NOTATION

Vv ig the volume of system under study;
N is the number of particles in it,
N/V ig the density of particles;
t ig the time;
P is the vector-radius;
m is the mass of particles;
v is its velocity;
£, 1, I, E: are the distribution functions;

FS
U(r) is the external field potential;
") is the differential section of particle scattering by angles 4, ¢
S is the total scattering section;
K is the kernel of colligion integral;
qp(rij) is the potential of molecular field;
Ty is the distance between i-th and j-th particles;
4 is the function of distribution at time moment t = 0;
@y ¥V are the constants in the law of potential variation (p(rij);
ry is the radius of action go(rij);
k(3 is the angular portion of kernel K;
Y is the power exponent in relation K versus |v ~vl;
X, Y C are the Banach spaces;
B is the operator;
BL is its derivative;
byl Loy 0 By X Yis Voo Hs W are the scalar constants;
h is the new unknown function;
hy is the value at time moment t = 0;
i, r, v is the auxiliary function:
E(r, v} is the total energy of particle;
X, 2, Z, Xp, Zy are the elements of space C;
L¢ is the linear operator in it;
I ig the gamma-function;
Do(y +3) is the function of parabolic cylinder;
S(xg, 1), 800, ry) are the spheres in gpace C;
[ s is the shear operator;
ol is the norm of element of space C.
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